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COMPUTATION OF 23-INVARIANTS 
OF REAL QUADRATIC FIELDS 

HISAO TAYA 

ABSTRACT. Let t? be a real quadratic field and p an odd prime number which 
splits in k. In a previous work, the author gave a sufficient condition for the 
Iwasawa invariant Ap(k) of the cyclotomic Zp-extension of k to be zero. The 
purpose of this paper is to study the case p = 3 of this result and give new 
examples of k with A3 (k) = 0, by using information on the initial layer of the 
cyclotomic Z3-extension of k. 

1. INTRODUCTION 

Let k be a finite totally real extension of the field of rational numbers Q. Let p 
be a fixed prime number and 7p the ring of p-adic integers. We denote by Ap(k), 
Lpp(k) and vp(k) the Iwasawa invariants of the cyclotomic Zp-extension of k for p 
(cf. [8]). In Greenberg's paper [7], both Ap(k) and upp(k) were conjectured to be 
zero. However, Greenberg's conjecture is not yet proven, even for real quadratic 
fields, although we know by the Ferrero-Washington theorem that upp(k) is always 
zero when k is an abelian extension of Q (cf. [1]). 

Let k be a real quadratic field and p an odd prime number which splits in k. In 
a previous paper [10], we gave a sufficient condition for Ap(k) to be zero. In the 

present paper, we first define two invariants n(r) and n2() for k and p, and rewrite 
our previous result in terms of these invariants. Next, using this result for p = 3, 
we will give some examples of k with A3 (k) = 0, which are of a new type. For this 

purpose, we will compute n(l) and nrl) for p = 3 by determining the unit group 
of the initial layer of the cyclotomic 23-extension of k by the method of Maki (cf. 

[3, 9]). 

2. A SUFFICIENT CONDITION FOR Ap(k) = 0 

Let k be a real quadratic field with class number h and fundamental unit E, and 
p an odd prime number which splits in k, namely, (p) = pp' in k where p 4 p'. 
Then we can choose ai E k such that p1h = (a). Fukuda and Komatsu [5] defined 
two invariants nl, n2 E N for k and p, by 

prni 11 (aP-1 
- 1), pn2 11 (6P1 

- 

1)- 

Here pnlla means that pnla and pn+l { a for an ideal a of k. Though the choice of 
ai is not unique, n, is uniquely determined under the condition nm < n2 
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For the cyclotomic Zp-extension 

k = ko C kl c k2 C C kn C c kooC 

let p' be the unique prime ideal of kn lying above p', dn the order of p' in the ideal 
class group of kn and En the unit group of kn. For m > n > 0, we denote by Nm,n 
the norm map from km to kn. Now we fix an integer r > 0. Then we can choose 
/r E kr such that p, dr = (/3r). We define two other invariants n(r)n (r) E N for k 
and p, by 

pntm fl (Nr,(r)13 - 1), pn(r) = pn2(Eo Nr,O(Er)). 

As in the case of nl, n(r) is uniquely determined under the condition n(r) < njr) 

though the choice of /3r is not unique. Put no = n(?, noting that n2 = n(?). It is 
easily seen that no < ni < n2* 

Remark 1. The invariant n(r) is a generalization of mr, which was defined in [10] 
under the assumptions that p t h and n2 > 2. 

Let An be the p-primary part of the ideal class group of kn and (p a primitive pth 
root of unity. For the CM-field k* = k((p), we put A -(k*) = Ap(k*) -Ap((k 
where (k*)+ is the maximal real subfield of k*. Noting Theorem 1 of [5] and Lemma 
3 of [10], we may rewrite Theorem 2 of [10] as follows, which is a generalization of 
the results of Fukuda and Komatsu in [2] and [5]. 

Theorem 1. Let k be a real quadratic field and p an odd prime number which 
splits in k. Fix an integer r > 0. Assume that 

1. Ao=1, 
2. A-(k*) =1. 

If n(r) 74 n2r) then we have Ap(k) = 0. 

Greenberg, Fukuda, Komatsu and Wada gave a number of examples of k with 
Ap(k) = 0 in three cases where n1 = 1, 2 < n1 #4 n2 and n1 = n2 = 2 (cf. [2, 5, 6, 7]). 
However, in the case where n1 = n2 > 3, no examples of such k's have been given 
until now. In the rest of this paper, we will give some examples of k with A3 (k) = 0 
in the cases where ni = n2 = 3, 4 and 5, using Theorem 1 for p = 3 and r = 1. 
Note that A3-(k*) = A3 (Q( -3d)), where d is the discriminant of k (cf. the proof 
of Theorem 10.10 in [11]). Therefore, we will compute n(l) and n(l) for p = 3 to 
achieve our purpose. 

3. COMPUTATION OF THE INVARIANTS no AND n4) FOR P = 3 

Let m be a positive square-free integer and k = Q (Vin). In this section, we 
will explain how to compute n(l) and n(l) for p - 3. Let ki be the initial layer 
of the cyclotomic 23-extension of k and Qi = Q(O), where 0 = 2cos(27r/9). Then 
k = Q(m,0). We put w = (1 + m/i)/2 or m/E according as m-1 (mod 4) or 
2, 3 (mod 4), and 0' = 2 cos(4-x/9). The following facts are well known: 

(a) {1, 0, 0'} is an integral basis for Ql, 
(b) {1, w} is an integral basis for k. 

We further assume that m is prime to 3. Since k and Qi are linearly disjoint over 
Q and their discriminants are relatively prime, we obtain the following: 

(c) {1, 0, 0', , Ow, 0'w} is an integral basis for kl. 
Since k, is a real cyclic extension of degree 6 over Q, we can determine the unit 

group E1 by Maki's algorithm (cf. [3, 9]). We now let 
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-El= K-, 1,972, 973,974, 975), 

where the generators ri are obtained by this algorithm and represented as linear 
combinations of the integral basis (c) for k1. Then we can compute nr1) for p = 3 
because this algorithm enables us to determine either N1,o(El) = Eo or Eo3 (cf. ?3 
in [9], also [3]). 

Now we assume that m 1 (mod 3). In order to compute n(1) for p = 3, we 
need to know the p-adic valuation of N1,o (/31)2 1. Thus we have to find a generator 

f31 of p,d1. Note that d1 = do or 3do. 
In the case where d1 = 3do, we have (30) p 3d= (/1). Hence, we may take 

E30 c k1 as a generator of p,d1 and can obtain 30 explicitly by a continued fraction 
expansion as in solving the Pell equations. 

In another case where d, = do, we have (,3o) = P31 - (/33) Therefore we 
obtain 

/3 = ?9r11r27r2397r441f5/3o for some ri E Z. 

Since (/3o) = (/33), there exists an appropriate system (ri, r2, r3, r4, rs), where 0 < 
ri < 2, with the property that ?711,12,q3r3714;417r/30 is a cube in kl. Then its unique 
real cubic root in k1 is a generator of p1 d1 . To find this appropriate system, we check 
whether a given q11 712q713,q714 971 ro iS a cube in k1, using approximate values of its 
unique real cubic root and its conjugates, and this is verified rigorously afterwards 
(see Example 1). 

Our programs have been executed on a Sun SPARC-station 2 using the C- 
language and on a NEC PC-9801RA using Y. Kida's UBASIC86. 

Remark 2. We do not need to know the entire unit group of k1 for our purpose. It 
is sufficient to know only the unit group modulo cubic. 

4. NEW EXAMPLES OF k WITH A3(k) = 0 

By executing our procedure mentioned in the previous section, we will give some 
examples of k with A3(k) = 0 in the cases where nr = n2 = 3, 4 and 5, respectively. 
First, we describe the following explicit example of such a k in detail. 

Example 1. Let k = Q(V8965) and p = 3. Then we can easily verify that h = 
2 (Ao = 1), do = 2, ? = 402390206 + 8590401w, p2 = (890 + 19w) and p'2 = 

(890 - 19w), so /3o = 890 - 19w, where w is as in ?3. It follows from the p-adic 
expansions of 2 and3o2 that no = n1 = n2 = 3. Since A -(k*) = A3(Q( ,/-3 8965)), 
it also follows from Fukuda's table [4] that A- (k*) = 1. 

On the other hand, by the method of Maki, we obtain a system {71n, 972, 73,9 74, 975} 
of fundamental units of k1 as follows: 

71 = E= 402390206 + 8590401w, 
972 0, 

973 = 0/ 

974 = 48894 - 364640 + 191520' + 1045w - 7720w + 4160'w, 

971 = 49939 - 195680 - 568040' - 1045w + 4160w + 11880'w, 

where 0 and 0' are as in ?3. We note that {0, 0'} is a system of fundamental units of 
Ql, and that 974 and 975 are relative units of ki. Hence it follows that N1,o (El) = E3 

so we obtain n(1) = 4. 



782 HISAO TAYA 

In this case, we have d, = do = 2 by Theorem 1 for r = 0 of [10]. Now let us put 
7= 71772?73q74q75/00, i.e., choose the system (1, 2, 1, 1, 1) (see Remark 3). Then we 

can get approximate values -yi of the unique real cubic roots of the six conjugates 
of -y as follows: 

OYi -. -9577.8744395484425899714390649555495943 

"Y2 -0.0578252538221422012093779803554794569., 

-y3 . - 11423747.694177045764647496253250783415 , 

-y4 - -0.0001895209088981839062474670241349699 ... 

"y5 -13.373368069820849234894393443243885952 .., 

zY6 -0.0000005612408729122976653704111340309. 

Taking the trace from k, to Q, we have 
6 

Z OY . -11433339.000000000000000000000000000000 . 

which is close to an integer (if it is not, then this system is not appropriate). By 
solving the system of equations 

*Yi = oX + X0+x20' + (yo +Y10+Y20')w, 

Y2 = xO + x10' + x20" + (yo + Yi ' + Y20")w, 

Oy3 = xO +x10"+x20+ (yo+Y10"+Y20)w, 

Xy4 = xO + Xl + X20' + (yo + Y10y + 20')w' 

-y5 = XO + x10' + x20" + (yo + Yi ' + Y20)W, 

Y6 = xO + x10" + x20 + (yo + Y10" + Y20)w', 

where 0" = 2 cos(8-x/9) and w' = (1 - 8965)/2, we obtain the following root 
approximately: 

(x0,x,x2,y0,Y1i,Y2) (-1885431,1396449, -745160, -40251,29812, -15908), 

which is also close to an integer (if it is not, then this system is not appropriate). 
We then put 

ol = -1885431 + 13964490 - 7451600' - 40251w + 298120w - 159080'w. 

It is easy to verify that 3y - /3, so the system (1, 2, 1, 1, 1) is really appropriate. 
Hence 01 is a generator of p'2. Taking the norm from k, to k, we have N1,0 (1) = 

-723897967519- 15454088423w. It follows from the p-adic expansion of Nl,o(,31)2 

that nrl) = 3 74 n(l) 
Therefore we see by Theorem 1 for r = 1 that A3(Q( 8965)) = 0. 

Remark 3. In Example 1, if (r1,r2,r3,r4,r5) is an appropriate system, then 
3202r2 0/2r3 is a cube in Ql. On the other hand, it is easy to see that 3020/ is 
a cube in Ql. Hence we obtain r2 = 2 and r3 = 1, so that it suffices for all practical 
purposes to search among only rl, r4 and r5, where 0 < ri < 2. This is often 
efficient in finding an appropriate system for other examples. 
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Let m be a positive square-free integer such that m _ 1 (mod 3). We executed 
the above procedure for the following all real quadratic fields k = Q(Vm) and 
p = 3: 

(i) ni = n2 = 3 for 1 < m < 20000 (The number of such k's is exactly 31). 
(ii) n, = n2= 4 for 1 < m < 30000 (The number of such k's is exactly 10). 

(iii) ni = n2 = 5 for 1 < m < 50000 (The number of such k's is exactly 2). 
The results are summarized in Tables 1, 2 and 3. In these tables, h, AO, dn and 

A3(k*) are as in ?2, and Dn = (Cl(pl )) n An, where Cl(p' ) denotes the ideal class 
of P' . The mark * indicates that the assumptions (1) and (2) of Theorem 1 are 
satisfied for r = 1, but we do not know whether A3(k) = 0 or not, and the mark ** 
indicates that we cannot apply Theorem 1, so we do not know whether A3(k) = 0 
or not. For the 17 remaining k's, i.e., exactly 11, 4 and 2 k's in the cases where 
ni = n2 = 3, 4 and 5, respectively, we can verify that Greenberg's conjecture is 
true by Theorem 1 for r = 1. 

TABLE 1. The case where ni =h2 = 3 for p = 3 

m h lAol do IDol di |Dii A-(k*) (nh),nT21)) A3(k) 
2059 2 1 2 1 2 1 1 (4,4) 
2917 3 3 3 3 3 3 3 (4,4) ** 
4081 4 1 4 1 4 1 1 (4,4) * 
4279 6 3 6 3 18 9 2 (3,3) ** 
5062 1 1 1 1 1 1 1 (3,4) 0 
5611 10 1 5 1 15 3 3 (3,3) ** 
7006 12 3 12 3 12 3 3 (3,4) ** 
7465 18 9 18 9 18 9 2 (3,4) ** 
7969 2 1 1 1 1 1 1 (3,4) 0 
8965 2 1 2 1 2 1 1 (3,4) 0 
9895 10 1. 10 1 10 1 1 (3,4) 0 
12007 3 3 3 3 3 3 2 (3,4) ** 
12313 1 1 1 1 1 1 1 (4,4) * 
12421 1 1 1 1 1 1 1 (4,4) * 
12553 1 1 1 1 1 1 1 (4,4) * 
13939 2 1 2 1 2 1 1 (3,4) 0 
14113 13 1 13 1 39 3 2 (3,3) ** 
15802 2 1 2 1 2 1 1 (3,4) 0 
16081 2 1 1 1 1 1 1 (4,4) * 
16519 1 1 1 1 1 1 1 (3,4) 0 
17431 1 1 1 1 3 3 2 (3,3) ** 
17443 1 1 1 1 3 3 3 (3,3) ** 
17686 2 1 1 1 3 3 2 (3,3) ** 
18022 1 1 1 1 1 1 1 (4,4) * 
18085 2 1 2 1 6 3 2 (3,3) ** 
18091 2 1 1 1 1 1 1 (3,4) 0 
18721 10 1 5 1 5 1 1 (4,4) * 
18766 2 1 1 1 1 1 1 (3,4) 0 
18787 1 1 1 1 1 1 1 (3,4) 0 
18826 6 3 6 3 6 3 2 (4,4) ** 
19309 X 1 1 1 1 1 1 1 (3,4) 0 
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TABLE 2. The case where n1 = n2 = 4 for p = 3 

m h ~lAol do IDol d1 IDII A-(k*) (7OUn2 n ) A3 (k) 
2149 1 1 1 1 1 1 1 (5,5) * 
9814 2 1 2 1 2 1 1 (5,5) * 
10849 1 1 1 1 1 1 1 (5,5) * 
16861 4 1 2 1 2 1 1 (4,5) 0 
17707 1 1 1 1 1 1 1 (5,5) * 
24007 1 1 1 1 1 1 1 (4,5) 0 
24985 2 1 2 1 6 3 3 (4,4) ** 
25597 2 1 1 1 1 1 1 (4,5) 0 
26245 16 1 4 1 4 1 1 (4,5) 0 
26893 3 3 1 1 1 1 1 (4,5) ** 

TABLE 3. The case where n1 = n2 =5 for p = 3 

m hIh lAol do Do0l di ID11 A-(k*) (nr4) n41)) A3 (k) 
22333 1 1 1 1 1 1 1 (5,6) 0 
42205 2 1 2 1 2 1 1 (5,6) 0 
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